skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tan, Ser Peow"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract Let $$\Delta $$ Δ be a hyperbolic triangle with a fixed area $$\varphi $$ φ . We prove that for all but countably many $$\varphi $$ φ , generic choices of $$\Delta $$ Δ have the property that the group generated by the $$\pi $$ π -rotations about the midpoints of the sides of the triangle admits no nontrivial relations. By contrast, we show for all $$\varphi \in (0,\pi ){\setminus }\mathbb {Q}\pi $$ φ ∈ ( 0 , π ) \ Q π , a dense set of triangles does afford nontrivial relations, which in the generic case map to hyperbolic translations. To establish this fact, we study the deformation space $$\mathfrak {C}_\theta $$ C θ of singular hyperbolic metrics on a torus with a single cone point of angle $$\theta =2(\pi -\varphi )$$ θ = 2 ( π - φ ) , and answer an analogous question for the holonomy map $$\rho _\xi $$ ρ ξ of such a hyperbolic structure $$\xi $$ ξ . In an appendix by Gao, concrete examples of $$\theta $$ θ and $$\xi \in \mathfrak {C}_\theta $$ ξ ∈ C θ are given where the image of each $$\rho _\xi $$ ρ ξ is finitely presented, non-free and torsion-free; in fact, those images will be isomorphic to the fundamental groups of closed hyperbolic 3-manifolds. 
    more » « less